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Abstract Long-range word order differences are a well-known problem for machine
translation. Unlike the standard phrase-based models which work with sequential
and local phrase reordering, the hierarchical phrase-based model (Hiero) embeds the
reordering of phrases within pairs of lexicalized context-free rules. This allows the
model to handle long range reordering recursively. However, theHiero grammarworks
with a single nonterminal label, which means that the rules are combined together into
derivations independently and without reference to context outside the rules them-
selves. Follow-upwork explored remedies involving nonterminal labels obtained from
monolingual parsers and taggers. As of yet, no labeling mechanisms exist for the
many languages for which there are no good quality parsers or taggers. In this paper
we contribute a novel approach for acquiring reordering labels for Hiero grammars
directly from the word-aligned parallel training corpus, without use of any taggers or
parsers. The new labels represent types of alignment patterns in which a phrase pair is
embedded within larger phrase pairs. In order to obtain alignment patterns that gen-
eralize well, we propose to decompose word alignments into trees over phrase pairs.
Beside this labeling approach, we contribute coarse and sparse features for learn-
ing soft, weighted label-substitution as opposed to standard substitution. We report
extensive experiments comparing our model to two baselines: Hiero and the known
syntax augmented machine translation (SAMT) variant, which labels Hiero rules with
nonterminals extracted from monolingual syntactic parses. We also test a simplified
labeling scheme based on inversion transduction grammar (ITG). For the Chinese–
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English task we obtain performance improvement up to 1 BLEU point, whereas for the
German–English task, where morphology is an issue, a minor (but statistically signif-
icant) improvement of 0.2 BLEU points is reported over SAMT. While ITG labeling
does give a performance improvement, it remains sometimes suboptimal relative to
our proposed labeling scheme.

Keywords Hierarchical statistical machine translation · Reordering · Reordering
labels · Soft constraints

1 Introduction

Word order differences between languages constitute a major challenge in machine
translation (MT). The statistical machine translation (SMT) literature has produced
a range of models aimed at predicting how the word order of the source sentence
is transformed into a plausible target word order. Generally speaking, the existing
reordering approaches that are integrated within translation (i.e. during decoding)
can be grouped into the sequential (Tillmann 2004; Galley and Manning 2008) and
the hierarchical (Chiang 2005; Zollmann and Venugopal 2006). While the sequential
approach considers the reordering process as a finite-state process over word or phrase
positions, the hierarchical approach (Hiero) works with a synchronous context-free
grammar (SCFG). For a decade now, the hierarchical approach (Chiang 2005) shows
improved performance for language pairswith long-range reordering such asChinese–
English and Japanese-English (Chiang 2005; Zollmann and Venugopal 2006). The
present work falls squarely within the hierarchical approach to reordering.

Hiero SCFG rules are extracted from a word-aligned parallel corpus. Like other
phrase-based models (Och and Ney 2004), the word alignment defines the set of trans-
lation rules that can be extracted from the parallel corpus. Hiero’s rules are labeledwith
a single nonterminal label X , beside the start symbol of the SCFG. Hiero’s reordering
patterns (straight/inverted) are embedded together with lexical context within syn-
chronous rules, which makes local reordering within a rule sensitive to direct context.
However, during decoding every rule may substitute on every nonterminal X , and
thus it is independent of any other rule given the source string. This may result in
suboptimal reordering as we now explain.

Figure 1 shows a toy training parallel corpus of three word-aligned sentence pairs,
decomposed into Hiero rules (hierarchical phrase pairs); the boxed Ri indices at the
nodes stand for rule identities placed on the left-hand side of every rule. For example,
in Fig. 1b we find rule R5

X → 〈eine rege und effective, a lively and effective〉

and in Fig. 1a, rule R3

X → 〈zu erreichen, to achieve〉
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(a) (b)

(c)

Fig. 1 Training examples, where the labeled and indexed nodes represent (some of the) phrase pairs that
can be extracted from the aligned sentence pairs. a (Left-binding) Inverted training example 1. b Monotone
training example. c (Left-binding) Inverted training example 2

By cutting out some of the embedded phrase pairs, we obtain Hiero rules with gaps.
As an example, from the phrase pair at the root of the aligned sentence pair in Fig. 1b,
the hierarchical rule R4

X → 〈X1 zusammenarbeit europäischer forscher X 2 ,

X 1 cooperation between european researchers X 2 〉

can be extracted by cutting out the two embedded phrase pairs R5 and R6 as gaps
labeled X . Similarly, we obtain rule R7

X → 〈X1 zusammenarbeit europäischer forscher X 2 ,

X 2 X 1 cooperation between european researchers〉
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(a)

(b)
Fig. 2 Translations of the new sentence “eine rege und effektive zusammenarbeit europäischer forscher zu
erreichen”. a Correct translation for new sentence that produces the right word order. b Wrong alternative
translation that can be produced by Hiero

from the root phrase pair in Fig. 1c. Note how the training examples for the English
verbs “to fight” in Fig. 1c and “was achieved” in Fig. 1b are embedded within, respec-
tively, monotone and inverted reordering patterns when translated into German.1

We now exemplify how Hiero risks missing the correct word order and how labels
from the surrounding word alignment context may help. In Fig. 2a, translation rule
R7 is combined with rule R5 and rule R3 to translate the new sentence “eine rege
und effektive zusammenarbeit europäischer forscher zu erreichen”. Here starting from
translation rule R7 and then substituting R5 and R3 on the two X nonterminals, the cor-

1 In the German-English examples in this section, we use fully lowercased versions of all words including
proper nouns, as is also done in the experiments.
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rect word order can be obtained. However, the rules extracted during training also per-
mit a different translation of this sentence that produces the wrong word order, shown
in Fig. 2b. This translation is formed by combining R4 with R5 and R3. Both Hiero
derivations are eligible, and the independence assumptions between rules suggest that
there is no reason why Hiero’s synchronous grammar should be able to select the cor-
rect word order. The independence assumptions between the rules suggest also that
the burden of selecting the correct reordering is left over to the target language model.

How could use of word alignment context help produce preference for correct
reordering in Hiero? Contrast the reordering structures in Fig. 1a, c to the structure in
Fig. 1b. In the first two the verb units, “to achieve” and “to fight” (labeled with a bold
X), are inverted with respect to the embedding context, whereas in the latter example,
the verb “was achieved” is monotone with respect to the embedding context. In this
simple example, two types of verbs can be discriminated using word-alignment types
from the embedding rules, which can be used as Hiero labels. Such labeling can be
obtained during Hiero rule extraction from the word-aligned training-sentence pairs
without need for other resources. By extracting such reordering labels, the incorrect
substitution in Fig. 2b could be either prevented or made far less likely than the
correct alternative.2 Phrases induce a certain reordering pattern with respect to their
sub-phrases and with respect to the parent phrase that embeds them. We note that in
a sentence-aligned, word-aligned parallel corpus, it turns out that there are more such
reordering patterns than the binary choice of monotone/inverted.

The core idea in this work is to extract phrase labels from word alignments by first
decomposing them recursively into their sub-component alignments. The decompo-
sition we are interested in proceeds in the same way that word alignments decompose
recursively into phrase pairs (Zhang et al. 2008). Such decomposition results in trees in
which the nodes dominate phrase pairs. But the decomposition in this work maintains
on every node also the alignment relation (called node operator or simply operator)
which expresses how the sibling phrase pairs under that node compose together at the
target side relative to the source side. Subsequently we bucket the resulting node oper-
ators into classes and use these classes as labels for Hiero rules. The ITG orientations
(straight and inverted) (Wu 1997) turn out to be special cases of this general scheme,
and in our experiments we show that limiting the choice to ITG, although beneficial,
could be suboptimal sometimes.

Traditional grammar nonterminal labels signify hard categories, and substituting a
rule with a left-hand side label X may take place only on the same nonterminal X . Like
earlier labeling approaches (e.g., (Zhang et al. 2008)), we also find that exact match
substitution for nonterminals is suboptimal. Following Chiang (2010), we devise a
set of feature weights that allow any nonterminal label Y to substitute on any other
label X with some cost determined by tuning the feature weights associated with
the substitution. We call this approach elastic-substitution decoding, because during

2 One might wonder about the frequency of verbs that show such preferences for reordering: in the filtered
test grammar (see Sect. 5) there are more than 27,000 phrase pairs, each with 2 words on both sides, that
show such a preference for inversion relative to their embedding context. A large fraction of these phrase
pairs corresponds to such verbal constructs. This itself is just a part of one of many types of reordering
phenomena, selected for this example.
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decoding the label substitution of Y on X with some cost can be seen as if the labels
stretch during decoding to allow for as wide a set of translation hypotheses as needed.

After summarizing the Hiero model and discussing related work in some more
detail, we propose a simple extension of normalized decomposition trees (NDTs)
(Zhang et al. 2008) with transduction operators that represent target-source phrase
many-to-many mappings, including non-contiguous translation equivalents. Based on
this extension, this paper contributes:

– A novel labeling approach for Hiero, which exploits tree decompositions of word
alignments, together with an effective proposal for features for elastic-substitution
decoding,

– Extensive experiments on German–English and Chinese–English showing the
superiority of this proposed labeling relative to Hiero and SAMT,

– Analysis of the experimental results showing the type and source of improved
performance.

2 Hierarchical models and closely related work

Hiero SCFGs (Chiang 2005, 2007) allow only up to two (pairs of) nonterminals on the
right-hand-side (RHS) of synchronous rules. The types of permissible Hiero rules are:

X → 〈α, δ〉 (1)

X → 〈α X 1 γ, δ X 1 η〉 (2)

X → 〈α X 1 β X 2 γ , δ X 1 ζ X 2 η 〉 (3)

X → 〈α X 1 β X 2 γ , δ X 2 ζ X 1 η 〉 (4)

Here α, β, γ, δ, ζ, η are terminal sequences. These sequences can be empty, except
for β, since hierarchical phrase-based translation, as first proposed by Chiang (2005)
(Hiero) prohibits rules with nonterminals that are adjacent on the source side. It also
requires all rules to have at least one pair of aligned words. These extra constraints
are intended to reduce the amount of spurious ambiguity. Equation (1) corresponds to
a normal phrase pair, (2) to a rule with one gap and (3) and (4) to the monotone and
inverting rules, respectively.

Given a Hiero SCFG G, a source sentence s is translated into a target sentence t
by one or more synchronous derivations d, each of which is a finite sequence of well-
formed substitutions of synchronous productions from G, see (Chiang 2006, 2007).
The goal of finding themost likely translation is then replaced by the somewhat simpler
problem of finding the most likely derivation d, as in (5):

argmax
d∈G P(t, d | s) (5)

We parse s with G so we limit the space of derivations to those that are licensed by
G for s, and so we have P(t, d | s) = P(d) (t is the sequence of target terminals
generated by d). Following Och and Ney (2002), a log-linear model over derivation
d computes the probability of a derivation as a product of weighted features φi for
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that derivation. Apart from the language model feature φLM , every other feature φi

is defined as a product over a function applied at the individual rule level. The total
derivation probability is then computed by multiplying the weighted language model
probability PLM (e)λLM with the product over the other features, weighted by their
feature weight λi , as in (6):

P(d) ∝ PLM (t)λLM ·
∏

i �=LM

∏

(X→〈α,δ〉)∈d

φi (X → 〈α, δ〉)λi

= PLM (t)λLM ·
∏

(X→〈α,δ〉)∈d

∏

i �=LM

φi (X → 〈α, δ〉)λi (6)

By rearranging the two products, we obtain a product ranging over individual rule
features. Apart from the language model feature, all other weighted features can be
multiplied together for every rule separately, giving individual rule weights which are
computed efficiently. Unfortunately, the computation of P(d) demands multiplica-
tion with the language model probability PLM (e), which is not defined in terms of
individual rules. This adds considerable complexity to the decoding process, and for
this reason approximation is necessary in the form of beam-search with pruning, e.g.,
cube-pruning (Huang and Chiang 2007; Chiang 2007).

In the next two subsections we will discuss work that is closely related to our work,
followed by an overview of our contributions. Other distantly related work will be
discussed in Sect. 7.

2.1 Lexicalized orientation models

We first look at work that distils reordering information from word alignments, shar-
ing a general intuition with this work. Xiao et al. (2011) add a lexicalized orientation
model to Hiero (akin to Tillmann (2004)), and achieve significant gains. Nguyen and
Vogel (2013) extend this idea by integrating a phrase-based (non-hierarchical) lex-
icalized orientation model as well as a distance-based reordering model into Hiero.
This involves adapting the decoder, so that rule chart items are extended to keep
the first and last phrase pair for their lexical spans. Huck et al. (2013) overcome
the technical limitations of both Xiao et al. (2011) and Nguyen and Vogel (2013)
by including a hierararchical lexicalized orientation model into Hiero. This requires
making even more drastic changes to the decoder, such as delayed (re-)scoring at
hypernodes up in the derivation of nodes lower in the chart whose orientations
are affected by them. Although sharing a similar intuition to our work, phrase-
orientation models are not equivalent to Hiero/SCFG labeling mechanisms because
formally they require extensions to SCFGs (which demand drastic changes in the
decoder).

2.2 Soft constraints

Our approach towards soft constraints is based on Chiang (2010). Chiang’s work
uses labels similar to Zollmann and Venugopal (2006) with syntax on both sides. It
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applies Boolean features for rule-label and substituted-label combinations and uses
discriminative training (MIRA: (Cherry and Foster 2012)) to learn which substitu-
tion combinations are associated with better translations. Their work also explores
the usage of further rule extraction heuristics to extract a set of only non-crossing3

rules, selected in order of relative linguistic robustness of the (partial) constituents
for the left-hand-sides of the extracted rules. This yields a grammar that is even
smaller than Hiero itself, while still giving similar results. In our case, without
access to linguistic labels, this type of selection is not directly applicable and is
therefore not used. Other related work on soft constraints will be discussed in
Sect. 7.

2.3 Innovations of the proposed method

This work is an extended version of an SSST 2014 workshop paper (Maillette de
Buy Wenniger and Sima’an 2014a) and differs substantially as follows. We provide a
thoroughmotivation for our kind of labeling and explainHierarchical Alignment Trees
in Sect. 3.1 (absent in the SSST paper). We provide full detail of the label extraction
approach (which was not discussed in detail in the short paper). Beside Hiero, we
also report experiments for a new baseline, the syntactically-labeled SAMT (shortly
discussed in Sect. 5.1), both onGerman–English andChinese–English. Comparing to a
syntactically-labeled baseline gives a better feel for the performance differences to our
approach. We discuss label-substitution features, our implementation of soft (label)
matching constraints, in Sect. 4. Beside the basic label-substitution features found
in SSST 2014, here we add a sparse label-substitution feature set, plus extensive
additional experiments using this expanded feature set, which show how it further
improves the results for German–English and Chinese–English translation. Finally,
we provide qualitative analysis of the behaviour of our model in terms of reordering
and the role of the language model.

The labeling approach presented next differs from existing approaches. It is inspired
by work on elastic-substitution decoding (Chiang 2010) that relaxes the label match-
ing constraints during decoding, but employs novel, non-linguistic bilingual labels.
Furthermore, it shares the bilingual intuition with phrase orientation models but is
based on a new approach to SCFG labeling, thereby remaining within the confines of
Hiero SCFG, avoiding the need to make changes inside the decoder.4 Our approach is,
to the best of our knowledge, the first to exploit labels extracted from decompositions
of word alignments.

3 Two extracted rules r1 and r2 cross when their associated source (and target) spans in the training data
overlap, e.g. if r1 spans source and target words 0–3, and r2 spans words 3–4, these rules are crossing.
4 Elastic-substitution decoding can be easily implemented without adapting the decoder, through a smart
application of “label bridging” unary rules. This is done by adding a set of unary rules—one rule for any
combination of nonterminals—in combination with adding a marker to left-hand-side and right-hand-side
nonterminals in order to avoid unary rule chains. In practice, however, adapting the decoder turns out to be
computationally more efficient, so we use this solution in our experiments.
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2.4 Some notes on terminology and definitions of basic concepts

A methodology of central importance in this paper is the earlier mentioned approach
proposed by Chiang (2010), whereby the matching constraint is softened so that non-
terminals can be substituted to other nonterminalswith possibly different,mismatching
labels. However, besides softening the matching constraint, a second crucial compo-
nent of this approach is the use of dedicated features—so-called label-substitution
features—that enable learning preferences over different types of label substitutions.
Without addition of such features, labels would in fact be meaningless in a setting
where strict matching of labels is not enforced. Unfortunately, no well-established
name exists in the literature for Chiang (2010)’s approach. In this paper we have cho-
sen to use the term elastic-substitution decoding to refer to this approach. Some of
the other names sometimes used in the literature for this approach are: soft matching,
fuzzy matching, soft labeling, and soft matching constraints. Finally, note that in earlier
work (Maillette de Buy Wenniger and Sima’an 2014a), we have in fact used multiple
different terms for this concept. Here we have tried to improve this, by using only
a single term—elastic-substitution decoding—which implies both (i) the softening
of the (label) matching constraint during decoding, and (ii) the usage of some set of
label-substitution features.

The concepts binarizable/non-binarizable word alignment and non-decomposable
phrase pair used in this work are based on the definition of phrase pair. Informally, a
phrase pair corresponds to contiguous spans on the source and target side, so that each
of the positions in the source span is only aligned to positions in the target span, and
each of the positions in the target span is only aligned to positions in the source span.
A non-decomposable phrase pair is a phrase pair that contains no other phrase pairs. A
binarizable word alignment is then a word alignment which induces only phrase pairs
that are either themselves non-decomposable or else can be decomposed (split) into
just two smaller phrase pairs. A non-binarizable word alignment contains one or more
phrase pairs that are not non-decomposable but that cannot be decomposed (split) into
just two smaller phrase pairs.

3 Bilingual reordering labels by alignment decomposition

In the following we describe how reordering labels are formed. In particular, the rules
we extract are identical to Hiero rules (Chiang 2007) (see Sect. 2) except for their
labels. Following Zhang et al. (2008), we view Hiero SCFG rule extraction from
the hierarchical perspective of word alignment decomposition as a two-step process.
Initially, every word alignment in the training corpus is decomposed recursively into
a canonical normalized decomposition tree (NDT). This results in a kind of training
treebank of NDTs. Subsequently, the Hiero rules are extracted from these NDTs as
in Zhang et al. (2008).

It is useful here to exemplify the decomposition of word alignments into NDTs
because it helps understand how we extend NDTs and the extracted rules with the
bilingual reordering labels. Figure 3 shows an alignment from Europarl German–
English (Koehn 2005) along with a maximally decomposed phrase pair tree structure.
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Fig. 3 Example alignment from Europarl

Fig. 4 Normalized decomposition tree (Zhang et al. 2008) extended with pointers to original alignment
structure from Fig. 3

Figure 4 shows the NDT for Fig. 3 extended with pointers (boxed integers) to the
original phrase pair tree in Fig. 3. The boxed integers indicate how the phrase pairs
in the two representations correspond. In an NDT, the root node of every subtree
represents a phrase pair with spans indicated by the ranges of the two pairs of integers
that decorate that root node. Every composite phrase pair is recursively split up into a
minimum number (two or greater) of contiguous parts. In Fig. 4 the root node covers
the source and target span from words [1, 6], and it embeds two phrase pairs: the
first covers the source-target spans ([1, 2], [2, 3]), and the second covers source-target
spans ([4, 5], [4, 5]). From the source-target ranges that decorate the NDT nodes it
is easy to compute bijective phrase permutation information: the two children of the
root node in Fig. 4 have ranges ([1, 2], [2, 3]) and ([4, 5], [4, 5]), respectively, which
shows that they are ordered in binary straight orientation. Note, however, that together
these two phrase pairs in the example NDT do not explicitly show the build-up of
their entire parent phrase-pair ([1, 6], [1, 6]) because of a discontinuous translation
equivalence involving tailor...accordingly/ darauf...ausrichten.
TheNDTdoes not explicitly show this discontinuity, nor does it show the internal word
alignment within. In short, the NDT shows how phrase pairs maximally decompose
into other phrase pairs and how these permute at each tree level, but NDTs abstract
away from aspects of word alignments that are important for representing cases of
discontiguous translation equivalents and other non-bijective alignments (many-to-
many or unaligned words) internal to phrase pairs. This should not be an issue as
long as phrase and rule extraction is the sole goal. However, for extracting labels
capturing the types of reordering occurring inside or around phrase pairs, we propose
that other alignment information is also needed at the NDT nodes. For this purpose we
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next present hierarchical alignment trees (HATs), which are decompositions of word
alignments that retain all alignment information at the tree nodes.

3.1 From NDTs to HATs: explicit node operators

HATs are best understood by noting that they extend not just NDTs but also permuta-
tion trees (PETs) (Gildea et al. 2006). In Fig. 5a a non-binarizable word alignment with

(a)

(b)

(c)

Fig. 5 A word alignment (a), with non-binarizable bijective word mappings (permutation) and its corre-
sponding permutation tree (PET) (b) and normalized decomposition tree (NDT) (c). In (b) permutation
labels such as [2,4,1,3] denote the local relative reordering mapping at every node. Circles with different
fillings and shades are used to indicate matching translation equivalents on the source and target side of
the PET. Note that the NDT representation (c) does not explicitly state the mapping relations, in contrast
to the PET representation. It instead specifies pairs of source/target span ranges, such as ([1,6], [1,6]), that
are translation-equivalent. While for PETs the mapping relations are in principle still retrievable from the
NDT by reasoning, in the case of NDTs for general non-bijective (discontiguous) word alignments, even
this reconstruction is no longer possible and information about the mapping is lost
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bijective wordmappings is shown. Figure 5b shows its corresponding permutation tree
and Fig. 5c its corresponding NDT. A PET is a recursive hierarchical representation
of a maximal decomposition (also called factorization) of a permutation. Word align-
ments with bijective wordmappings can be represented as permutations, and therefore
as permutation trees. The permutation labels on the tree nodes in a permutation tree
describe exactly the recursive hierarchical reordering of the word alignment, see the
example in Fig. 5b. Starting from the permutation label [2, 4, 1, 3] at the top, and
expanding the first child 2 with the child permutation [2, 1], shifting the numbers as
necessary, we arrive at the (intermediate) permutation [3, 2, 5, 1, 4]. Finally expand-
ing the last child 4 in the intermediate permutation (originally 3 before expansion)
with the child permutation [1, 2] and shifting the numbers again we retrieve the origi-
nal permutation [3, 2, 6, 1, 4, 5]. This illustrates an important property of PETs: they
completely retain all information of the original permutation, so that by incremental
evaluation of the node operators that original permutation is easily reconstructed. In
contrast, NDTs represent only the set of phrase pairs and their subsumption relations,
but not the information about the reordering. Figure 5c illustrates this. Thus, NDTs do
not contain the reordering information and therefore are not equivalent to the original
word alignments.

The capability of PETs to completely represent hierarchical reordering suggests that
they are a good start for representing hierarchical translation equivalence. The only
problem with permutation trees is that they are limited to alignments with bijective
word mappings. HATs overcome this limitation by generalizing permutation trees to
general alignments with many-to-many mappings. In doing so HATs extend NDTs
by retaining exact alignment information on every node represented using a notation
called set permutation. A set-permutation operator represents a given word alignment
as a mapping from source-to-target units (or vice versa): every source unit is mapped
into a target unit,where a unit can be a set ofmultiple positions (possibly discontinuous)
that map to the same positions on the other side. Set permutations are exactly the
generalization of permutations that is necessary to allow generalization of PETs into
HATs. In Fig. 6 we show the HAT corresponding to the earlier example in Fig. 3 and
the associated NDT in Fig. 4. Notice how for example the source-to-target mapping
between subsumed words and phrases under the root node is explicitly represented
by the set-permutation operator [2,{1,4},3,4]: The first English position maps into
the second German position, and the second English position maps to two German
positions {1, 4} and the third and fourth English positions map to third and fourth
German positions, respectively.

In fact, the node operators can be computed by minor additional book-keeping
while decomposing the word alignment into NDTs. Following the algorithm of Zhang
et al. (2008), this book-keeping involves keeping track of where each source subtree
child of a node maps to on the target side according to the original word alignment.
This demands representing decomposed word alignments as set-permutation node
operators, which extend beyond the bijective case (permutations). The details of this
extension of NDTs can be found together with the phrase decomposition algorithm in
Sima’an and Maillette de Buy Wenniger (2013).

For Hiero rule extraction it is possible to avoid enumerating the exponentially many
possible HATs for the same word alignments by straightforwardly representing them
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Fig. 6 Hierarchical alignment
tree (HAT) corresponding to the
example of Figs. 3 and 4. Note
that while in this case there is
only one HAT for the alignment,
in general a set of alternate
HATs is induced, corresponding
to alternate maximal
decompositions for an alignment
and encoded as a chart (packed
forest)

in a O(n3) parse forest in a CYK-style parsing algorithm (Sima’an and Maillette de
Buy Wenniger 2013).5

3.2 Nonterminal labels by bucketing node operators

The node operators on HAT nodes encode decomposed word-alignment information.
The HAT representation exposes the shared operators between different word align-
ments across a large corpus. In this work we propose to bucket these operators and
employ the buckets as labels for the Hiero rules while extracting them. The bucketing
is technically needed for various reasons. Firstly, it results in a manageable number
of labels and avoids problems with sparsity. In a strict-matching decoding setup for
example, having more labels leads to more spurious derivations and splitting of the
probability mass. Similarly, when working with elastic-substitution decoding, just one
labeled version per Hiero rule type is used (see canonical labeled rules at the end of
Sect. 4). While necessary to keep the approach efficient and coherent, however, keep-
ing just one labeled version does introduce uncertainty. Therefore the number of labels
should be restricted, to avoid spreading out the probability mass over many different

5 Our software for decomposing word alignments into HATs and for graphical visualization of these HATs
is described in Maillette de BuyWenniger and Sima’an (2014b) and is available for download from https://
bitbucket.org/teamwildtreechase/hatparsing. The software is licensed under the terms of the GNU Lesser
General Public License.
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alternatives, making the selected rule versions and thereby the labels in general ulti-
mately less reliable. Thirdly, the most common and well-known operators monotone
([0,1]) and inverted ([1,0]) have only one variant, while there aremany variants ofmore
complex operators for permutation and discontinuous reorderings. To avoid having the
simpler but more frequent operators be obscured by a heap of complex but rare dis-
tinct operators, we bucket them to limit the total number of operators. Finally, in a
elastic-substitution decoding setting, reducing the number of labels helps to keep the
number of features down (while also reducing complexity and problems with search
errors) and is altogether important to keep the soft constraints learnable by the tuner.

In what follows we define two approaches for bucketing the HAT operators. The
first approach simply uses the identity of the bucket of the operator on the current
node itself (hence 0th order), whereas the second approach employs a bucketing of
the operator on the parent of the current node (1st order).6

Phrase-centric (0th-order) labels are based on the view of looking inside a phrase
pair to see how it decomposes into sub-phrase pairs. The operator signifying how the
sub-phrase pairs are reordered (target relative to source) is bucketed into a number of
“permutation complexity” categories. As a baseline labeling approach, we can start
out by using the two well-known cases of inversion transduction grammars (ITG)
{Monotone, Inverted} and label everything7 that falls outside these two categories
with a default label “X” (leaving some Hiero nodes unlabeled). This leads to the
following coarse phrase-centric labeling scheme, which we name 0th I TG+:

1. Monotonic (Mono): binarizable, fully monotone plus non-decomposable phrase
pairs.

2. Inverted (Inv): binarizable, fully inverted.
3. X: decomposable phrase pairs that are not binarizable.

A clear limitation of the above ITG-like labeling approach is that all phrase pairs
that decompose into complex non-binarizable reordering patterns are not further dis-
tinguished. Furthermore, non-decomposable phrase pairs are lumped together with
decomposable monotone phrase pairs, although they are in fact quite different. To
overcome these problems we extend ITG in a way that further distinguishes the non-
binarizable phrase pairs and also distinguishes non-decomposable phrase pairs from
the rest. This gives a labeling scheme we will call simply 0th-order labeling, abbre-
viated 0th , consisting of a more fine-grained set of five cases, ordered by increasing
complexity (see examples in Fig. 7):

6 We think of our labels as implementing a Markov approach to SCFG labeling. The first (0th order)
labeling approach just describes the reordering information at the phrase pairs themselves, analogous to
the way syntactic labels describe the syntactic category for the source and/or target side of phrase pairs in
syntactic hierarchical SMT. The second (1st order) labeling approach describes the reordering relative to
an embedding parent phrase pair, thereby looking not at the local reordering but at the reordering context
of the parent.
7 Non-decomposable phrase pairs (an example is the “Atomic” phrase pair in Fig. 7) will still be grouped
together with Monotone phrase pairs (an example is the “Monotone” phrase pair in Fig. 7), since they are
more similar to this category than to the catchall “X” category.
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Fig. 7 Different types of phrase-centric alignment labels

1. Atomic: non-decomposable phrase pairs.
2. Monotonic (Mono): binarizable, fully monotone.
3. Inverted (Inv): binarizable, fully inverted.
4. Permutation (Perm): decomposes into a permutation of four or more sub-phrases.8

5. Complex (Comp): does not decompose into a permutation and contains at least
one embedded phrase pair.

In Fig. 8, we show a phrase-complexity labeled derivation for the example in Fig. 3.
Observe how the phrase-centric labels reflect the relative reordering at the node. For
example, the Inverted label of node-pair 2 corresponds to the inversion in the alignment
of 〈we should, müssen wir〉; in contrast, node-pair 1 is complex and discontinuous
and the label is Complex.

Parent-relative (1st-order) labels capture the reordering that a phrase undergoes rel-
ative to an embedding parent phrase pair. This can be seen as a first-order view on
reordering (if the phrase-centric type is considered a zero-order).

1. For a binarizable parent phrase pair with orientation Xo ∈ {Mono, Inv}, the source
side of the phrase pair itself can either group to the left only Left-Binding-Xo, right
only Right-Binding-Xo, or with both sides ((Embedded) Fully-Xo) of the source
side of the embedding parent phrase pair.

2. (Embedded) Fully-Discontinuous: any phrase pair within a non-binarizable per-
mutation or complex alignment containing discontinuity.

3. Top: phrase pairs that span the entire aligned sentence pair.

In cases where multiple labels are applicable, the simplest applicable label is chosen
according to the following preference order: {Fully-Monotone, Left/Right-Binding-
Monotone, Fully-Inverted, Left/Right-Binding-Inverted, Fully-Discontinuous, TOP}.

8 A permutation of length 3 can always be decomposed into a set of simpler nested permutations of length
2. As an example, the permutation [3,1,2] can be decomposed as the simpler nested permutation [2,[1,2]].
Equally, any SCFG of rank 3 can always be converted into a SCFG of rank 2, but not all SCFGs with rank
≥ 3 are binarizable.
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Fig. 8 Synchronous trees (implicit derivations) based on differently labeled Hiero grammars. The fig-
ure shows alternative labeling for every node: Phrase-Centric (0th-order) (gray) and Parent-Relative
(1st-order) (very light gray). The abbreviations for the Parent-Relative labels are: E.F.D. embedded fully
discontinuous, R.B.I right-binding inverted, L.B.M. left-binding monotone

In Fig. 8 the parent-relative labels in the derivation reflect the reordering taking place
at the phrase pairs with respect to their parent node. Node 4 has a parent node that
inverts the order and the sibling node it binds is on the right on the source side, so it is
labeled “right-binding inverted” (R.B.I.); E.F.D. and L.B.M. are similar abbreviations
for “(embedded) fully discontinuous” and “left-binding monotone”, respectively. As
yet another example node 7 in Fig. 8 is labeled “left-binding monotone” (L.B.M.)
since it is monotone, but the alignment allows it only to bind to the left at the parent
node, as opposed to only to the right or to both sides, whose cases would have yielded
“right-binding monotone” R.B.M. and “(embedded) fully monotone” (E.F.M.) parent-
relative reordering labels, respectively.

There is some similarity between the information gained in parent-relative reorder-
ing labels (by distinguishing left- and right side binding directions) with the
information gained in lexicalized orientation models that keep track of orientation
in both left-to-right and right-to-left direction, i.e. Galley and Manning (2008), Huck
et al. (2013). For these models, determining the orientation in both directions slightly
improves performance. Because in lexicalized orientation models keeping orienta-
tion in two directions helped, and since the binding direction for our monotone and
inverted labels has similarity with it, we expected this binding direction to be also help-
ful for improving word order. Nevertheless, more fine-grained labels also increase
sparsity and consequently make the learning problem more difficult. For this rea-
son, the net effect of distinguishing binding direction remained hard to predict and
could still have been negative. Accordingly, we also formed a set of coarse parent-
relative labels (“1st Coarse”) by collapsing the label pairs Left/Right-Binding-Mono
and Left/Right-Binding-Inverted into single labels One-Side-Binding-Mono and One-
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Side-Binding-Inv.9 This coarse variant was tested in all settings, but gave in general
comparable or lower results than the original, more fine-grained version, and is there-
fore left out to increase readability of the reported result tables.10

4 Features for elastic-substitution decoding

Labels used in hierarchical SMT are typically adapted from external resources such as
taggers and parsers. As in our case, these labels are typically not fitted to the training
data, with very few exceptions, e.g. Mylonakis and Sima’an (2011), Mylonakis (2012)
and Hanneman and Lavie (2013). Unfortunately this means that the labels will either
overfit or underfit, and when they are used as strict constraints on SCFG derivations
they are likely to underperform. Experience with mismatch between syntactic labels
and the data is abundant, and using elastic-substitution decoding with suitable label
substitution features or a similar approach has been shown to be an effective solution
(Venugopal et al. 2009; Chiang 2010;Marton et al. 2012). The intuition behind elastic-
substitution decoding is that even though heuristic labels are not perfectly tailored to
the data, they do provide useful information provided that the model is “allowed to
learn” to use them only in as far as they can improve the final evaluationmetric (usually
BLEU, (Papineni et al. 2002)). Next we introduce the set of label-substitution features
used in our experiments.

Basic label-substitution features Consist of a unique feature for every pair of labels
〈Lα, Lβ〉 in the grammar, signifying a rule with left-hand-side label Lβ substituting on
a gap labeled Lα . These features are combinedwith twomore coarse features, “Match”
and “Nomatch”, indicating whether the substitution involves labels that match or not.

Figure 9 illustrates schematically the concept of label-substitution features. In this
figure the substituting rule is substituted onto two gaps in the chart, which induces two
label-substitution features indicated by the two ellipses. The situation is analogous for
rules with just one gap. Tomake things concrete, assume that both the first nonterminal
of the ruleN1 aswell as the first gap it is substituted onto (GAP1) have the labelMONO.
Furthermore, assume that the second nonterminal N2 has the label COMPLEX while
the label of the gap GAP2 it substitutes onto is INV . This situation results in the
following two specific label-substitution features:

– subst(MONO,MONO),
– subst(INV ,COMPLEX).

Sparse label-substitution features Every applied rule, abstracted by its orientation
plus reordering label signature, is enriched with information regarding the nature of

9 We could also further coarsen the 1st labels by removing entirely all sub-distinctions of binding-type for
the binarizable cases, but that would make the labeling essentially equal to the earlier mentioned 0th I TG+
except for looking at the reordering occurring at the parent rather than inside the phrase pair itself. We did
not explore this variant in this work, as the high similarity to the already explored 0th I TG+ variant made
it seem unlikely to add much extra information.
10 The coarse version does sometimes perform better in combination with sparse features. We attribute this
to the fact that sparse features can lead to overfitting, but only to a lesser degree with a coarser (and thus
smaller) label set, since the number of sparse features is a polynomial function of the number of labels.
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(a) (b)
Fig. 9 Schematic view of label-substitution features. Labels/Gaps with the same filling in the figures
correspond to the situation of a nonterminal/gap whose labels correspond (for N1/GAP1). Fillings of
different shades (as for N2/GAP2 on the rigth in the two figures) indicate the situation where the label of the
nonterminal and the gap is different. a Basic label-substitution features. b Sparse label-substitution feature

the labeled gaps it is substituting onto. This information is encoded as sparse fea-
tures defined as follows: For every non-empty ordered set of gaps denoted gaps
and rule substituting on it rule with left-hand-side LHS(rule) and nonterminals
N (rule), binary features are added for the specific combinations of four tuples:
〈LHS(rule), N (rule), L(gaps), O(rule)〉, where O(rule) is reordering orientation
(inverted/monotone) internal to rule and L(gaps) the ordered set of labels belonging
to gaps in the derivation. This is illustrated in Fig. 9b by the dashed curve, which
indicates these elements defining the sparse label-substitution feature for this rule
substitution. Assuming again the label assignment mentioned before—N1 = MONO,
L(GAP1) = MONO, N2 = COMPLEX , L(GAP1) = INV—and furthermore assum-
ing the left-hand-side of the rule isMONO and the orientation of the rule is monotone,
we would obtain the following sparse label-substitution feature:

– 〈MONO, {MONO,COMPLEX}, {MONO, INV},monotone〉.
Canonical labeled rules Typically when labeling Hiero rules there can be many dif-
ferent labeled variants of every original Hiero rule. With elastic-substitution decoding
this leads to prohibitive computational cost. This also has the effect of making tuning
the features more difficult. In practice, elastic-substitution decoding usually exploits
a single labeled version per Hiero rule, which we call the “canonical labeled rule”.
Following Chiang (2010), this canonical form is the most frequent labeled variant.

5 Experiments

We choose to evaluate our models on two different language pairs: German–English
and Chinese–English. The choice of these two pairs is driven by the knowledge that
while in German word order is often tied with morphological changes at the word
level, this is not the case for Chinese. 11

11 As one illustration of this, in German, some sentences can be written with different word orders
and morphological case markings, while expressing the same meaning. Various examples are given in
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Table 1 Size statistics for the training, development and testing datasets used in the experiments

Data set # Sentence
pairs

# Source
words

Mean/Std source
sentence length

# Target
words

Mean/Std target
sentence length

German–English

Training 994,861 20,358,970 20.46 ± 8.88 21,449,488 21.56 ± 9.14

Development 2000 55,526 27.76 ± 15.93 59,425 29.71 ± 16.99

Testing 2000 55,580 27.79 ± 15.67 59,153 29.58 ± 16.85

Chinese–English

Training 7,340,000 147,609,854 20.11 ± 9.25 159,567,205 21.74 ± 9.91

Development 1812 46,864 25.86 ± 13.02 54,665.5 30.17 ± 15.89

Testing 1912 48,250 25.24 ± 12.8 58,844.0 30.78 ± 16.69

For the Chinese–English dataset, there are 4 references for the target side of the development set and testing
set. Hence, for these datasets the number of target words (#target words) is a mean taken over the four
references, and the mean/std target sentence length is computed from the four references combined into
one

Hence, we may expect different behaviour on the two language pairs, which could
provide insight into the limitations of our approach (reordering approaches in general)
for dealing with languages where word order and morphology are tied together.

All data is lowercased as a last pre-processing step. In all experiments we use our
own grammar extractor for the generation of all grammars, including the baseline
Hiero grammars. This enables us to use the same features (as far as applicable given
the grammar formalism) and ensures that the grammars under comparison are identical
in terms of using exactly the same set of extracted rules (differing only in labels and
associated label features).

German–English The training data for our German–English experiments is derived
from parliament proceedings sourced from the Europarl corpus (Koehn 2005), with
WMT-07 development and test data. We used a maximum sentence length of 40 for
filtering the training data. We employ 995,909 sentence pairs for training, 2000 for
development and 2000 for testing (single reference per source sentence). An overview
of these and other statistics about the training, development and testing dataset is
shown in Table 1. Both source and target of all datasets are tokenized using the Moses
(Koehn et al. 2007) tokenization script. We do not use compound splitting as part of
the data preparation.12 For these experiments both the baseline and our methods use a

Footnote 10 continued
(Müller 2002). As one example, the sentence “dass der Astronaut den Planeten entdeckt hat” and “dass
den Planeten der Astronaut entdeckt hat” both have the same meaning: “that the astronaut discovered the
planet”. The morphological markings of “der Astronaut“ and “den Planeten” disambiguate their function
as subject and object, respectively, in both sentences.
12 Although compound-splitting could be important for building the best possible system, this was not
the goal in our experiments. Our goal was to create an experimental setup that allows for a fair, replicable
comparison of our systems against Hiero and SAMT. As we believe that the potential disadvantage of
omitting compound-splitting should affect all compared systems equally, given our goal, we judged that for
the sake of simplicity it was reasonable to do so.
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Table 2 Language model training corpora sizes

Language pair #Sentences #Words Mean/Std sentence length

German–English 994,861 21,449,488 21.56 ± 9.14

Chinese–English 5,427,696 135,635,561 24.99 ± 15.99

4-g language model with Kneser-Ney smoothing (Chen and Goodman 1999) trained
on the target side of the full original training set (995,909 sentences). Statistics about
the data used to train the language models is shown in Table 2.
Chinese–English The training data for our Chinese–English experiments is formed
by combining the full sentence-aligned MultiUN (Eisele and Chen 2010; Tiedemann
2012)13 parallel corpus with the full sentence-aligned Hong Kong Parallel Text14 par-
allel corpus from the Linguistic Data Consortium.15 The Hong Kong Parallel Text
data is in traditional Chinese and is thus first converted to simplified Chinese to be
compatible with the rest of the data.16 We used a maximum sentence length of 40
for filtering the training data. The combined dataset has 7,340,000 sentence pairs.
The MultiUN dataset contains translated documents from the United Nations, sim-
ilar in genre to the parliament domain. The Hong Kong Parallel Text in contrast
contains a richer mix of domains, namely Hansards, Laws and News. For the develop-
ment and test sets we use theMultiple-Translation Chinese datasets from LDC, parts
1–4,17 which contain sentences from the News domain. We combined parts 2 and 3
to form the development set (1813 sentence pairs), and parts 1 and 4 to form the test
set (1912 sentence pairs). For both development and testing we use 4 references. The
Chinese source side of all datasets is segmented using the Stanford Segmenter (Chang
et al. 2008).18 The English target side of all datasets is tokenized using the Moses
tokenization script.

For these experiments both the baseline and our method use a 4-g language model
withKneser–Ney smoothing trainedon5,427,696 sentences ofdomain-specific19 news
data taken from the “Xinhua” subcorpus of the English Gigaword corpus of LDC.20

13 Freely available and downloaded from http://opus.lingfil.uu.se/
14 The Hong Kong Parallel Text corpus contains a significant amount of duplicate sentence pairs. We
removed these duplicates and kept only one copy per unique sentence pair.
15 The LDC catalog number of this dataset is LDC2004T08.
16 Using a simple conversion script downloaded from http://www.mandarintools.com/zhcode.html
17 LDC catalog numbers: LDC2002T01, DC2003T17, LDC2004T07 and LDC2004T07.
18 Downloaded from http://nlp.stanford.edu/software/segmenter.shtml
19 For Chinese–English translation the different domain of the train data (mainly parliament) and devel-
opment/test data (news) requires usage of a domain-specific language model to obtain optimal results. For
German–English, all data is from the parliament domain, so a language model trained on the (translation
model) training data is already domain-specific.
20 The LDC catalog number of this dataset is LDC2003T05.
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Table 3 An overview of our labeling schemes, their system names and the components they exploit

System name Label order Label granularity Matching type Label substitution
features set

Hiero-0th I TG+ 0th order Coarse Strict None

Hiero-0th 0th order Fine Strict None

Hiero-1st 1th order Fine Strict None

Hiero-0th I TG+-SftB 0th order Coarse Soft Basic

Hiero-0th -SftB 0th order Fine Soft Basic

Hiero-1st -SftB 1th order Fine Soft Basic

Hiero-0th I TG+-SftB+S 0th order Coarse Soft Basic + Sparse

Hiero-0th -SftB+S 0th order Fine Soft Basic + Sparse

Hiero-1st -SftB+S 1th order Fine Soft Basic + Sparse

The suffixes in the system names in the first table column are abbreviations, directly corresponding to
the system dimensions in the other columns: label order {0th , 1th}, label granularity (“I TG+” indicating
the coarse variant of 0th order labels), matching type (default is strict,“Sft” denotes elastic-substitution
decoding), label substitution type (“B” denoting basic- and “B + S” basic + sparse label substitution
features)

5.1 Experimental structure

We compare our reordering-labeled systems against two baseline systems: the (unla-
beled) Hiero and the target-language syntax-labeled variant known as SAMT. In our
experimentswe explore the influence of three dimensions of bilingual reordering labels
on translation accuracy. These dimensions are:

– label order: the type/order of the labeling {0th, 1st},
– label granularity: granularity of the labeling {Coarse,Fine},
– matching type: the type of labelmatching performed during decoding {Strict,Soft},
– label substitution feature set: the type of label substitution features that is used
during decoding, if any.

An overview of the naming of our reordering labeled systems is given in Table 3.
SAMT We use the original label extraction scheme as described in Zollmann and
Venugopal (2006). In particular we allow the binary “\”, “/” and ”+” operators. These
operators are based on combinatory categorial grammar (Steedman 2000). Using NT 1
and NT 2 to represent syntactic constituents, these operators informally denote the
following:

– NT 1 + NT 2: A partition into two sub-spans that both correspond to
constituents,

– NT 1/NT 2: NT 1 missing a NT 2 on the right,
– NT 2\NT 1: NT 1 missing a NT 2 on the left.21

21 Combinatory categorial grammar (CCG) (Steedman 2000) uses NT 1\NT 2 in place of NT 2\NT 1, to
indicate that NT 1misses NT 2 on the left. The different notation used by SAMT, which places the argument
itself to the left in this case can be confusing to people that are used to CCG notation.
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To keep the grammar size manageable, we do not allow “double plus” (A+B+C)
type labels, and we do not allow non-lexicalized rules. The choice not to allow non-
lexicalized ruleswasmade tokeepSAMT(like our systems) comparable toHiero, apart
from the labels. This avoids giving SAMT additional reordering capacity (through
abstract rules) which Hiero lacks, and thereby also keeps decoding times more work-
able.22 Finally, we use SAMT, as in the original work, with strict matching.23

Training and decoding details Our experiments use Joshua (Ganitkevitch et al. 2012)
with Viterbi best derivation. Baseline experiments use normal decoding, whereas
elastic-substitution decoding experiments relax the label-matching constraints while
adding label-substitution features to facilitate learning of label-substitution prefer-
ences.

For training we use standard Hiero grammar extraction constraints (Chiang 2007)
(phrase pairs with source spans up to 10 words; abstract rules are forbidden). During
decoding a maximum span of 10 words on the source side is maintained.

Following common practice, we use relative frequency estimates for phrase prob-
abilities, lexical probabilities and generative rule probability. We additionally add
common binary indicator features for glue rules, only terminals/nonterminals on the
right hand side, terminals on the source but not the target side, terminals on the target
but not the source side, and monotonic rules. We furthermore add the common rule
application count, word penalty and rarity penalty features,24 see e.g. Zollmann and
Venugopal (2006) for details.

With Hiero and the labeled systems in soft-matching setups, we use the Hiero
phrase probabilities in both directions (Chiang 2007), making the labeled systems
weakly equivalent to Hiero apart from their label-substitution features. For the labeled
systems in the strict matching systems, we follow Zollmann and Venugopal (2006)
in using the phrase probabilities that use the labels as well as all smoothed versions
of these phrase probabilities.25 Smoothing is done by removing the labels on source
and/or target side in all combinations. In what follows, we abbreviate source as src,
target as tgt , and use un to indicate the labels are removed. The phrase probability
features for the labeled systems in the strict matching setting are:

22 For example, Li et al. (2012) show that such abstract rules can by themselves provide performance gains
on top of improvements from the labels used in normal Hiero rules.
23 We spent major effort at implementing elastic-substitution decoding for SAMT as in Chiang (2010) but
faced huge scalability issues due to the number of labels which give problems for the implementation of
dot items in Joshua (Ganitkevitch et al. 2012).
24 Rule application count and word penalty simply count the number of rules and words, respectively. This
allows the model to learn preferences for longer or shorter derivations, and longer or shorter translations.
The rarity penalty for a rule r is defined as θrare = exp( 1

#(r)) ) with #(r) the number of times a rule has
been seen during training. This allows penalization of derivations using rare rules.
25 We use only the Hiero phrase-probability features for the labeled systems in the elastic-substitution
decoding setting, to keep them as close as possible to Hiero, so that the effect of the label-substitution
features can be measured purely. However, for the systems in the strict matching setting, we use the phrase
probability features and phrase probability smoothing features that involve the labels. In this setting we
involve the labels to allow them to influence the translation decisions through the phrase probabilities.
However, when using the labels in the phrase probabilities, the smoothed variants are necessary to avoid
sparsity problems, particularly with the sparse SAMT labels (Zollmann 2011).
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– p̂(tgt (r)|src(r)): Phrase probability target side given source side,
– p̂(src(r)|tgt (r)): Phrase probability source side given target side.

which are reinforced by the following phrase-probability smoothing features:

– p̂(tgt (r)|un(src(r))) and p̂(un(src(r))|tgt (r)): labels removed on source side,
– p̂(un(tgt (r))|src(r)) and p̂(src(r)|un(tgt (r))): labels removed on target side,
– p̂(un(tgt (r))|un(src(r))), p̂(un(src(r))|un(tgt (r))): labels removed on both
sides.

When labels on both sides are removed we obtain the original Hiero phrase probabil-
ities.

We train our systems using (batch k-best) MIRA (Cherry and Foster 2012) as
borrowed by Joshua from the Moses codebase, allowing up to 30 tuning iterations.
Following standard practice, we tune on BLEU, and after tuning we use the configura-
tion with the highest scores on the development set with actual (corpus-level) BLEU
evaluation. We report lowercase BLEU (Papineni et al. 2002), METEOR (Denkowski
and Lavie 2011), BEER (Stanojević and Sima’an 2014) and TER (Snover et al. 2006)
scores for the test set. We also report average translation length as a percentage of
the reference length for all systems. This is useful for analysis of possible overfitting.
In our experiments we repeated each experiment three times to counter unreliable
conclusions due to optimizer variance, so the scores are averages over three runs of
tuning plus testing. We use MultEval version 0.5.1.26 for computing these metrics.
We also use MultEval’s implementation of statistical significance testing between
systems, which is based on multiple optimizer runs and approximate randomization.
Differences that are statistically significant with respect to the Hiero baseline and
correspond to improvement/worsening are marked with 	H /�H at the p ≤ .05 level
and �H /�H at the p ≤ .01 level. For average translation length either higher or
lower may be better, depending on whether the baseline length was too low or too
high. We therefore use �H /�H in case of length to mark significant change with
respect to the baseline at the p ≤ .05 / p ≤ .01 level. Apart from computing the
statistical significance of differences with respect to theHiero baseline, we also com-
puted statistical significance of differences with respect to the SAMT baseline. The
significance for these differences are analogously marked 	S/�S/�S at the p ≤ .05
level and �S/�S/�S at the p ≤ .01 level. We also report the Kendall Reordering
Score (KRS), which is the reordering-only variant of the LR-score (Birch et al. 2010;
Birch and Osborne 2010) (without the optional interpolation with BLEU) and which
is a sentence-level score. For the computation of statistical significance of this metric
we use our own implementation of the sign test27 (Dixon and Mood 1946), as also
described in (Koehn 2010). For every experiment we use boldface to accentuate the
highest score across systems for all metrics except TER. Since TER is an error metric,

26 https://github.com/jhclark/multeval
27 To make optimal usage of the 3 runs we computed equally-weighted improvement/worsening counts for
all possible 3×3 baseline output / system output pairs and use those weighted counts in the sign test. While
traditionally the procedure of dealing with ties in the sign test is discarding them, there is in fact no real
consensus with respect to their correct treatment. However, recent literature explains that it may sometimes
be better to equally divide the ties between two systems (Rayner and Best 1999). This is intuitively a more
‘conservative’ approach which we adopted in our experiments.
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lower values are better, so we instead mark the lowest value with boldface for it. For
length, neither higher or lower is necessarily better. What is best is a length closest
to the reference length. Therefore, in case of the length metric, we boldface the value
that is closest to 100, in absolute terms.

5.2 Primary results: soft bilingual constraints and basic+sparse
label-substitution features

Table 4 shows the primary results of our full labeling scheme which uses elastic-
substitution decoding both with basic and sparse label-substitution features. Hiero
is the Hiero baseline, beneath it are shown the systems that use elastic-substitution
decoding (Sft): Hiero-0th I TG+-Sft and Hiero-0th-Sft using 0th-order labels.
Hiero -1st -Sftcorresponds to the system with 1st-order, parent-relative labels.

German–English Hiero-0th-SftB+S (with BLEU score of 28.57) slightly outper-
forms both Hiero and SAMT baselines by almost 0.2 BLEU points, which is
statistically significant. We remind the reader that German–English is rather dif-
ficult because word order in German is tied with morphological variations at the
word level, for which our model, like other models of reordering, does not have a
proper solution. This goes to highlight the limitations of these kind of models in
general.

Chinese–English Hiero-1st -SftB+S has the highest score for BLEU for all tested
systems on Chinese–English translation, outperforming Hiero and SAMT by approx-
imately 0.8–1.1 BLEU points. For metric TER, all labeled systems, including SAMT,
suffer performance loss in comparison to Hiero. We found out that the length ratio for
the output of the Hiero-1st -SftB+S system to the reference is 0.99 whereas the ratio
for Hiero’s output is 0.97, i.e. it seems that TER is penalizing more heavily longer
output even if it is closer in length to the reference (cf. (He andWay 2009)). This turns
out largely due to the fact that the 4-g LM tuned weight for the labeled systems is
always far lower than for Hiero, suggesting that the 4-g LM has a smaller contribution
during tuning for BLEU. Tuning for BLEU is not guaranteed to give improved perfor-
mance on all metrics, as noted by He and Way (2009), but we do see here improved
performance for three out of four metrics.

In Table 5 we show the absolute and relative sizes of the grammars for the different
label types. The reported sizes are for grammars that are filtered for the test set and that
are taken from the systems that use the labels in a strict matching setting. Note that for
the systems that use the bilingual reordering labels as soft bilingual constraints, the
grammar size is always equal to that of Hiero. The reason for this is that, as mentioned
earlier, with elastic-substitution decoding we use only one canonical labeled rule per
Hiero rule. Looking now at the grammar sizes in the table, we see that the size of the
grammar for SAMT is on average more than a factor of 4 bigger than the one used by
Hiero and the reordering labeled systems in the elastic-substitution decoding setting.
At the same time, the improvement over both SAMT and Hiero by the reordering
labeled systems is considerable, especially for Chinese–English. Even in the strict
matching setting, the reordering labeled systems still have grammar sizes that are
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Table 5 Filtered test grammar sizes for different label types and different language pairs

Label type German–English Chinese–English

Absolute size Relative size Absolute size Relative size

Hiero 17.2 1 33.4 1

SAMT 74.9 4.35 154.7 4.63

Hiero-0th I TG+ 19.1 1.11 38.4 1.15

Hiero-0th 28.7 1.67 55.7 1.67

Hiero-1st 23.6 1.37 48.9 1.46

This means that, in contrast to the elastic-substitution decoding system that allows only one canonically
labeled rule per Hiero (unlabeled) rule type, there can be multiple alternative labeled rule versions per Hiero
rule type
Absolute sizes are in millions of rules. Relative sizes are with respect to the Hiero (baseline) grammar, or
equivalently with respect to the grammars used in the elastic-substitution decoding experiments, which are
equal in size to Hiero. Grammars are taken from the strict matching systems for the label types

much smaller than SAMT, at most 1.67 times the size of the baseline Hiero grammar.
Furthermore, in what follows we will see that also for these systems the reordering
labeled systems are performing as well as SAMT and Hiero or better.

Next we perform ablation experiments where we isolate the effects of using sparse
features on top of the basic ones, and after that the using elastic-substitution decoding
vs. the traditional mere strict label matching.

5.3 Experiments with elastic-substitution decoding with basic label-substitution
features only

Nowwe isolate out the sparse features and use only the basic label-substitution features
with elastic-substitution decoding. The results are shown in Table 6. For brevity, we
show only the baseline results and results for Hiero-1st -SftB , which scores overall the
best amongst the reordering labeled systems using the basic feature set.

German–English There are only minor improvements for BLEU and METEOR over
the Hiero and SAMT baselines, with somewhat bigger improvements for TER. How-
ever, SAMT has the highest improvements for TER and KRS over Hiero on this
language pair.

Chinese–English the improvements are considerable: +0.98 BLEU improvement over
the Hiero baseline for Hiero-1st -Sft as well as +0.42 METEOR and +1.81 KRS. TER
is worse by +0.85 for this system. For Chinese–English the Fine version of the labels
gives overall superior results for both 0th-order and 1st-order labels.

Compared with the primary system (basic+sparse label-substitution features)
results in Table 4, we see that the added nuances of sparse label-substitution fea-
tures can make a difference, strongly so for German–English and to a lesser degree
also for Chinese–English.
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Table 7 Mean results bilingual labels with strict matching (see Footnote 18)

System name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length

Chinese–English

Hiero 31.63 �S 30.56 13.15 59.28 �S 58.03 �S 97.15 �S

SAMT 31.87 	H 30.61 13.38 59.97 �H 59.94 �H 98.46 �H

Hiero-0th I TG+ 31.94 �H 30.84 �H �S 13.37 60.76 �H �S 59.45 �H 99.13 �H �S

Hiero-0th 31.90 �H 30.79 �H �S 13.45 60.11 �H 59.68 �H 98.65 �H

Hiero-1st 31.77 30.62 13.20 60.13 �H 59.89 �H 98.47 �H

5.4 Experiments with strict label matching: no added softeners

Now we explore the added value of soft label matching features by excluding them
and using the labels as traditional grammar labels (hard constraints). In contrast to
the elastic-substitution decoding experiments where only canonical labeled rules are
included in the grammar, in this setting all labeled rule variants are used.Themotivation
for this difference is that in a strict label-matching setting, coverage-loss problems
arise during translation. Using all labeled rule variants, as common in strict labeling
approaches (e.g., (Zollmann and Venugopal 2006)), does not solve these problems but
at least reduces them as much as possible in this setting.

The results are shown in Table 7. Here we only show results for Chinese–English.
For brevity,we omit the results forGerman–English as there are no clear improvements
over the baseline for this language pair, or at least not for BLEU, the tuningmetric used.
For the computation of SAMT for Chinese–English we initially had problems with
grammar extraction due to the enormous size of even the filtered grammar. We finally
overcame this by extracting the grammar in parts and merging them. To be exact, this
does make some of the feature values which involve normalization potentially slightly
different from what they would have been if they were directly computed for the full
grammar in one go. However, due to the inherently highly heuristic nature of these
features, this is assumed to not have a real effect on the actual results. All systems in
the table use the default decoding with strict label matching.

Chinese–English overall Hiero-0th I TG+ shows the biggest improvements, namely
significant improvements of +0.31 BLEU, +0.28 METEOR and +1.42 KRS. TER is
the only metric that worsens, and considerably so with +1.48 points. This system is
also superior to SAMT for BLEU and METEOR, but not for TER and KRS. SAMT
achieves the highest improvement in KRS, namely 1.91 points higher than the Hiero
baseline. Just like the reordering labeled systems, SAMT also loses performance on
TER over Hiero.

5.5 Summary of experimental findings

We may summarize the experiments with the following conclusions:

– Whereas for German–English the performance improvement is rather modest, for
Chinese–Englishwe see considerable improvements and overall the best results for
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the combination of elastic-substitution decoding, with the Fine 1st-order variant
of the labeled systems using basic plus sparse label-substitution features (Hiero-
1st -SftB+S).

– Crucial for performance is the use of a soft-constraint approach to label matching,
as opposed to strict-matching.

– Particularly interesting is the comparison to the ITG+ labeled variant of our
scheme. While ITG+ labeling already obtains improved performance, we do see
that a more elaborate labeling scheme (as simple as our bucketing) may bring
about even further improvement.

– Finally, the different reordering labeled systems outperform SAMT on BLEU and
METEOR and also for TER and/or KRS. Interestingly, the reordering-labeled
grammars are comparable in size to Hiero’s, i.e. less than one third of SAMT
grammar size.

In conclusion, we find it encouraging that our automatic labeling approach, which
does not demand additional (monolingual) resources beyond a parallel corpus,28

gives comparable or better performance improvement to syntax-labeling approaches.
We hypothesize that the two types of labeling capture complementary reordering
information, particularly that target syntax in SAMT allows more fluent MT output,
strengthening the target language model.

6 Analysis

In this section we will give a deeper analysis of the qualitative results obtained and dis-
cussed so far. We have seen how soft reordering constraints can significantly improve
the results. These constraints are effectuated by using bilingual reordering labels in
combination with elastic-substitution decoding and label-substitution features. The
question is how exactly these constraints contribute to the performance. We will focus
on two dimensions of analysis, with each dimension chosen to shed light on a different
aspect of the effect of the reordering constraints. The dimensions we will look at are:

1. Interaction between reordering constraints and language model: to what extent
does the function of soft reordering constraints overlap with the function of a
strong language model, and to what extent does it add information that even a
strong language model cannot capture?

2. Can we derive some qualitative understanding of where the quantitative improve-
ments come from, and whether these improvements are valid?

Each of these dimensions of analysis will now be discussed in detail in the following
subsections.

28 As usual in contemporary SMT, our approach also needs an adequate target language model in the
complete system in order to achieve state of the art performance. In particular, as is also the case for
syntactic labeling approaches, we do not aim to replace the language model with our labels. We rather build
upon the already reasonable translation afforded by a good language model, and strive to use this as a basis
to improve performance further.

123



254 G. Maillette de Buy Wenniger, K. Sima’an

6.1 An experiment with a unigram language model: how good is the reordering
model?

In this subsection we try to better understand the interaction between reorderingmodel
and languagemodel. Herewe contrast the experiments from the preceding sectionwith
new experiments with the same SCFG-based reordering models but intergrated with
a unigram LM (instead of a 4-g LM). A unigram language model informs about prior
lexical preferences but leaves the word order to the SCFG-based reordering model.
This should provide some insight into two aspects: (1) the importance of the LM for
final performance, and (2) the role of the bilingual labels in affecting final word order
choice.

Table 8 shows the results for these experiments on German–English and Chinese–
English and clearly the results drop substantially from the experiments in the preceding
section with a 4-g LM. Some specific remarks per language pair are due.

German−English: The relative improvement of the labeled systems over the
Hiero baseline has increased to +0.65 BLEU points. Similar increase in improvement
can also been seen for METEOR, BEER and KRS. The labeling seems to give a better
reorderingmodel, although the 4-g LM seems to catch upwith it and reduce themargin
of improvement.

Chinese−English: The relative improvements over the baseline are considerably
smaller in the unigram LM experiments relative to the 4-g LM. Nevertheless, the best
system still achieves approximately +0.3 BLEU improvement while also improving
TER by approximately -0.2. Apparently, the labeled reordering model here is better
than Hiero in reranking the hypotheses but there is a set of top-ranking hypotheses
that cannot be differentiated well without a strong LM.

The drop for Chinese–English (-12 BLEU) is markedly larger than the drop for
German–English (-5 BLEU), suggesting that the 4-g LM could be specifically impor-
tant for discriminating between the top-ranking reorderings among the hypothesis
translations for Chinese–English.

Table 8 Results for extra analysis translation experiments using only a Unigram Language Model (see
Footnote 18)

System name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length

German–English

Hiero 23.67 31.27 16.32 61.19 65.79 99.18

Hiero-1st -SftB 24.15 �H 31.37 �H 16.67 61.09 66.01 99.87 �H

Hiero-1st -SftB+S 24.32 �H 31.39 �H 16.78 61.02 	H 66.00 99.94 �H

Chinese–English

Hiero 20.23 27.88 9.50 66.57 58.56 98.60

Hiero-1st -SftB 20.51 �H 27.91 9.51 66.36 �H 58.82 98.42 �H

Hiero-1st -SftB+S 20.49 �H 27.93 9.55 66.81 �H 58.78 98.78 �H
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6.2 Qualitative analysis

A qualitative analysis can give some additional insight about what is going in the
actual translations, which quantitative scores fail to provide. On the other hand qual-
itative analysis has the disadvantage of being biased and relying on a very small
sample. While we cannot really alleviate the drawback of a small sample here, we
do try to alleviate the problem of selection bias by looking at some of the most
improved test sentences according to METEOR as well as some test sentences that
gave the highest drop in METEOR score. We used METEOR as opposed to BLEU
for the selection, because it is better as a sentence-level score, and has a more explicit
reordering component. By considering an equal number of improved and worsened
examples in this way, selected by a clear criterion (highest gain/drop in METEOR
score), we hope to be able to form a somewhat more objective opinion based on
the selected examples. Here we chose to look at Chinese–English examples, since
Chinese–English is the language pair where we observe the greatest benefits from our
method in terms of improving word order, as indicated by BLEU, METEOR and KRS
improvements.

Looking first at the three improved examples in Table 9, we see that in all cases there
is a clear improvement in word order (structure) as well as lexical selection. Looking
next at the examples where performance worsens in Table 10, the errors seem to be
mainly in lexical selection. A reason for this could be that the labeled system assigns
a relatively lower weight to the language model, which may make it more susceptible
to make such lexical selection errors. At the same time these examples do seem to
support the expected increased capability in getting the global reordering structure
right of the reordering labeled system.

While the drawbacks of qualitative analysis discourage us from drawing strong
conclusions from this, the examples do seem to give some additional support for
the thesis that in Chinese–English translation reordering labels help to improve
word order and global sentence structure. This improvement seems to some-
times come at a price in the quality of lexical selection, possibly due to the
relatively lower weight of the language model in comparison to the Hiero
baseline.

6.3 Summary of findings from analysis

The conclusions from these different analyses can be summarized as follows:

– There is overlap between the work done by a strong language model and work
done by the labeled reordering models. However, Hiero’s performance depends
to a larger extent on the 4-g language model than the labeled reordering systems,
suggesting that the latter systems give more adequate reordering.

– The qualitative analysis of a small number of examples shows that also on the
qualitative level there is evidence that the labels are effective in improving both
reordering and lexical selection.
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7 Related work

7.1 Syntax-based labels

A range of (distantly) related work exploits syntax for Hiero models, e.g. Huang et al.
(2006), Liu et al. (2006), Zollmann and Venugopal (2006), Mi et al. (2008), Mi and
Huang (2008), Almaghout et al. (2010), Almaghout et al. (2012), Li et al. (2012). In
terms of labeling Hiero rules, SAMT (Zollmann and Venugopal 2006; Mylonakis and
Sima’an 2011) exploits a ‘softer’ notion of syntax by fitting the CCG-like syntactic
labels to non-constituent phrases.

7.2 Label clustering methods

Approaches to automatically coarsen the label set used by SAMT are explored in Han-
neman and Lavie (2011, 2013). In this approach, the similarity between conditional
probability distributions of labels is used to merge labels. The conditional probability
of a source label si given a target label t j is computed with simple relative frequency
estimation, counting the frequency of si and t j together and dividing by the total
frequency of t j in combination with any source label si ∈ S. The computation of
conditional probabilities for target labels given source labels is analogous. Based on
these distributions L1 distances are computed for all pairs of labels, in both source-to-
target and target-to-source directions. Finally, the pair of labels with the smallest L1
distance between corresponding label distributions in either direction is merged. This
is further improved upon by Mino et al. (2014) who propose an alternative cluster-
ing algorithm based on the exchange algorithm (Uszkoreit and Brants 2008), which
obtains comparable results, but which runs an order of magnitude faster.

7.3 Soft constraints

Soft syntactic constraints have been around for some time now (Zhou et al. 2008;
Venugopal et al. 2009; Chiang 2010; Xiao and Zhu 2013). Zhou et al. (2008) rein-
force Hiero with a linguistically-motivated prior. This prior is based on the level of
syntactic homogeneity between pairs of non-terminals and the associated syntactic
forests rooted at these nonterminals, whereby tree kernels29 are applied to efficiently
measure the amount of overlap between all pairs of sub-trees induced by the pairs of
syntactic forests. Crucially, the syntactic prior encourages derivations that are more
syntactically coherent but does not block derivations when they are not. Venugopal
et al. (2009) associate distributions over compatible syntactic labelings with grammar
rules, and combine these preference distributions during decoding, thus achieving a
summation rather than competition between compatible label configurations. The lat-
ter approach requires significant changes to the decoder and comes at a considerable

29 Informally, tree kernels are operators that efficiently compute a function K (T, T ′) of two input tree
arguments T and T ′, e.g. the number of common subtrees. The efficient computation of the function by
tree kernels is often achieved by a form of dynamic programming.
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computational cost. Soft constraints as proposed by Chiang (2010) and adopted in this
paper were discussed earlier in Sect. 2.2 and will not be repeated here. Xiao and Zhu
(2013) focus on unsupervised learning of sub-tree alignment based on synchronous
tree substitution grammars in combination with the Expectation Maximization (EM)
algorithm (Dempster et al. 1977) or a Bayesian learning approach. The translation
approach in their work in contrast to ours is based on tree-to-tree translation. It uses
syntax on both sides and works with rule sets that even with the labels removed still
differ significantly from Hiero. However, in line with our work, this approach also
requires elastic-substitution decoding (Chiang 2010) to obtain the best results.

7.4 Learning labels

Improving the quality of the extracted syntactic rules and their labels for syntactic
translation with the help of the EM-algorithm is explored by Wang et al. (2010). This
work uses re-structuring—binarization of syntactic trees—to make more translation
patterns available. It also uses re-labeling to improve the adequacy of syntactic labels
and re-aligning to improve word alignments.

Learning labels in a robust way is also explored by Mylonakis and Sima’an (2011).
This work uses a special variant of the EM algorithm called Cross-Validated EM to
avoid the standard problems of EM with overfitting. The algorithm is then used to
learn a distribution of source-labeled hierarchical rules with labels of different levels
of specificity. The labels are based on the SAMT labeling approach and also include
some basic information about relative orientation with respect to parent rules.

Learning latent-variable SCFGs for hierarchical translation is explored by Saluja
et al. (2014). This work uses spectral learning or the EM-algorithm to learn tensors
that capture the latent variable information of rules. The tensors are used by means of
tensor-vector products,30 somewhat similar to theway label preferences are propagated
in Venugopal et al. (2009). Third-order tensors as opposed to matrices (second-order
tensors) are required in the case of binary rules to capture the relation whereby the
rule tensor takes the vectors of its two nonterminals as inputs to produce an output
vector for the left-hand-side of the rule. Learning of labels is done based on the
covariances between sparse feature vectors for inside and outside trees for rules in
the training corpus.31 The work uses minimal rules to avoid the complex problem of
simultaneously learning the latent variables and the segmentations ofword alignments.

30 Tensors are multidimensional arrays that generalize vectors and matrices. A third-order tensor T can be
imagined as a stack ofmatrices.When T is combined in a tensor-vector productwith two input vectors v1 and
v2 to produce an output tensor, this corresponds to the following computation: First v1 is multiplied (on the
right) with each of the stacked matrices, producing a single intermediate result matrix Mint : T ·v1 = Mint .
Second, v2 is multiplied (on the right) with Mint to produce the final result vector vresult : Mint · v2 =
vresult .
31 The concepts inside- and outside-tree are defined in terms of another concept called skeletal tree. The
skeletal tree for an aligned sentence pair is the synchronous tree composed of the set of synchronous rules
in the derivation of the aligned sentence pair. Since only minimal rules are used, there is always only one
unique derivation. The inside tree for a rule in the training contains the entire sub-tree at and below the
left-hand-side nonterminal, and the outside tree is everything else in the synchronous skeletal-tree except
the inside-tree.
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7.5 Improvement and evaluation of reordering with permutation trees

Stanojević and Sima’an (2015) propose a method for inducing reordering grammars
based on permutation trees (PETs) for preordering. Their work uses a modified form
of PETs (Gildea et al. 2006) in combination with variable splitting for the permutation
labels of PET nodes (Matsuzaki et al. 2005; Prescher 2005; Petrov et al. 2006). The
reported results show significant improvements over no preordering, a rule-based pre-
ordering baseline (Isozaki et al. 2010) and an ITG-based preordering baseline (Neubig
et al. 2012). Usage of all PETs yields better results than working with a single PET in
the reported experiments. This work is relevant in the context of ours because it also
shows that working with PETs gives significant improvement over using only ITG
reordering operators. There are large differences with our work. Our work uses all
hierarchical alignment trees (HATs) in combination with bucketing to form labels for
elastic-substitution decoding, improving hierarchical translation within the decoder.
Stanojević and Sima’an (2015) instead restrict the set of used HATs to only PETs
(bijective mappings), and learn the labels. Nevertheless, both contribute evidence to
the thesis that word order can be significantly improved without using syntax.

Stanojević and Sima’an (2014) propose a new and highly successful machine trans-
lation evaluation method called BEER. This metric uses a multitude of weighted
features, with weights that are directly trained to maximize correlation with human
ranking. As such, the metric shows very high correlation with human evaluation of
translation performance. Training is done for pairwise rankings using learning-to-
rank techniques in a way that is similar to PRO MT system tuning (Hopkins and May
2011). Some of the successful new features that are proposed are character n-grams
and features based on PETs. The latter features are concerned with reordering and turn
out to be an important component in the success of the metric. In the context of this
work, the effectiveness of PETs in characterizing the correctness of translation word
order as part of the complete evaluation gives yet another reason to believe that the
information present in PETs (and more generally, HATs) may be particularly suitable
for improving word order in SMT.

8 Conclusion

We presented a novel method to enrich hierarchical statistical machine translation
with bilingual labels that help to improve the translation quality. Considerable and
significant improvements in the BLEU, METEOR and the Kendall Reordering Score
(KRS) are achieved simultaneously for Chinese–English translation while tuning on
BLEU, where the KRS is specifically designed to measure improvement of reordering
in isolation. Significant improvements in the BLEU score are achieved for German–
English. Our work differs from related approaches that use syntactic or part-of-speech
information in the formation of reordering constraints in that it needs no such addi-
tional information. It also differs from related work on reordering constraints based on
lexicalization in that it uses no such lexicalization but instead strives to achieve more
globally coherent translations, afforded by global, holistic constraints that take the
local reordering history of the derivation directly into account. Our experiments also
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once again reinforce the established wisdom that soft, rather than strict constraints,
are a necessity when aiming to include new information to an already strong system
without the risk of effectively worsening performance through constraints that have
not been directly tailored to the data through a proper learning approach. While lex-
icalized constraints on reordering have proven to have great potential, unlexicalized
soft bilingual constraints, which are more general and transcend the rule level, have
their own place in providing another agenda of improving translation which focusses
more on the global coherence direction by directly putting soft alignment-informed
constraints on the combination of rules. Finally, while more research is necessary in
this direction, there are strong reasons to believe that in the right setup these different
approaches can be made to further reinforce each other.
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